Post

Edge Couplers

Edge Couplers

Edge coupler

Source Code


1
2
3
4
5
6
7
8
9
10
# Import necessary packages
import numpy as np
import matplotlib.pyplot as plt
import gdsfactory as gf
import meep as mp
import gplugins.gmeep as gm
import gdsfactory.cross_section as xs
import gplugins.modes as gmode
import gplugins.gmeep as gmeep
import pandas as pd
1
2
Using MPI version 4.1, 1 processes
2025-10-27 01:18:07.623 | INFO     | gplugins.gmeep:<module>:39 - Meep '1.31.0' installed at ['/home/ramprakash/anaconda3/envs/si_photo/lib/python3.13/site-packages/meep']

Mode overlapping method

Source Code


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Calcualte neff and group index using mode solver from gplugins
modes = gmode.find_modes_waveguide(
    parity=mp.NO_PARITY,
    core_width=0.180,
    core_material=3.45,
    clad_material=1.45,
    core_thickness=0.22,
    resolution=40,
    sy=3,
    sz=3,
    nmodes=4,
)
m1 = modes[1]
m2 = modes[2]
m3 = modes[3]

m1.plot_e_all()
m2.plot_e_all()

print("Effective index of mode 1 = ", m1.neff)
print("Effective index of mode 2 = ", m2.neff)

# Calcualting the group index
disp = gmode.find_mode_dispersion(
    wavelength=1.55,
    wavelength_step = 0.01,
    core='Si',
    clad='SiO2',
    mode_number=1, 
    core_thickness=0.22,
    core_width=0.180
            )
print('The group index =', disp.ng)

png

png

1
2
3
Effective index of mode 1 =  1.488715595441966
Effective index of mode 2 =  1.4710532916621737
The group index = 1.829190062206731

TODO: Calculate the mode overlap of the gaussian mode and the taper mode

Adiabatic taper from gdsfactory

Source Code


1
2
3
4
5
taper = gf.components.taper_adiabatic(width1=0.19, width2=0.5, length=0, alpha=0.02)
# taper.draw_ports()
taper.plot()
scene = taper.to_3d()
scene.show()

png

Using 3D MEEP for the edgecoupler

Source Code


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
%%writefile ec_MPI_sim.py
import gplugins.modes as gmode
import numpy as np
import matplotlib.pyplot as plt
import meep as mp
import gdsfactory as gf
import gplugins.gmeep as gm
import gdsfactory.cross_section as xs
import sys

mp.verbosity(3)
sys.stdout.flush()
# Set up frequency points for simulation
npoints = 50
lcen = 1.55
dlam = 0.100
wl = np.linspace(lcen - dlam / 2, lcen + dlam / 2, npoints)
fcen = 1 / lcen
fwidth = 3 * dlam / lcen**2
fpoints = 1 / wl

# Center frequency mode_parity
mode_parity = mp.ODD_Y #mp.EVEN_Y + mp.ODD_Z
dpml = 2
dpad = 1
resolution = 30

# Define materials
Si = mp.Medium(index=3.45)
SiO2 = mp.Medium(index=1.45)

abd_taper = gf.components.taper_adiabatic(width1=0.19, width2=0.5, length=0, alpha=0.02)

sub_t = 2
sio_t = 2
si_t = 0.220
air_t = 1
cladding_t = 1
sx = abd_taper.xsize + 2*dpml + 2
sy = abd_taper.ysize + 2*dpml + 2 * dpad
sz = 2*(sub_t+sio_t+si_t+dpml+air_t)

# Cell size
cell_size = mp.Vector3(sx,sy,sz)

# Create the ring resonator component
# abd_taper = gf.components.extend_ports(abd_taper, port_names=["o2"], length=1)
abd_taper = abd_taper.copy()

abd_taper.flatten()
abd_taper.center = (0, 0)

# Get geometry from component
coupler_geo = gm.get_meep_geometry.get_meep_geometry_from_component(abd_taper, is_3d=True)

geometry = []

# SiO2 cladding
geometry.append(
   mp.Block(
    center=mp.Vector3(0, 0, si_t/2),
    size=(mp.inf, mp.inf, cladding_t),
    material=SiO2
  )  
)

# GC geometry
geometry += [
    mp.Prism(geom.vertices, geom.height, geom.axis, geom.center, material=Si)
    for geom in coupler_geo
]

# geometry.append(geom_coupler)

# SiO2 slab 
geometry.append(
  mp.Block(center=mp.Vector3(0, 0, -sio_t/2), size=(mp.inf, mp.inf, sio_t), material=SiO2)  
)

# Si substrate 
geometry.append(
  mp.Block(center=mp.Vector3(0, 0, -sio_t-sub_t/2), size=(mp.inf, mp.inf, sub_t), material=Si)  
)

spot_size= 2.5
src = mp.GaussianSource(frequency=fcen, fwidth=fwidth)
source = [mp.GaussianBeam3DSource(
  src=src,
  size=mp.Vector3(0,0.5,2*si_t),
  center=mp.Vector3(abd_taper.ports["o1"].x, abd_taper.ports["o1"].y, si_t/2),
  beam_kdir = mp.Vector3(1,0,0),
  beam_E0=mp.Vector3(0,1,0),
  beam_w0=spot_size/2,
)]
sim = mp.Simulation(
  resolution=resolution,
  cell_size=cell_size,
  boundary_layers=[mp.Absorber(dpml)],
  sources=source,
  geometry=geometry,
  dimensions=3
)

taper_monitor_port = mp.ModeRegion(
  size=mp.Vector3(0,1,si_t+sio_t),
  center=mp.Vector3(abd_taper.ports["o2"].x, abd_taper.ports["o2"].y, 0),
)
taper_monitor = sim.add_mode_monitor(fpoints,taper_monitor_port)
taper_monitor_port_2 = mp.ModeRegion(
  size=mp.Vector3(0,1,si_t+sio_t),
  center=mp.Vector3(abd_taper.ports["o1"].x, abd_taper.ports["o1"].y, 0),
)
taper_monitor_2 = sim.add_mode_monitor(fpoints,taper_monitor_port_2)

dft_xz = sim.add_dft_fields([mp.Ey], fcen, 0,1,center=mp.Vector3(0,0,0), size=mp.Vector3(abd_taper.xsize,0,sz))

dft_xy = sim.add_dft_fields([mp.Ey], fcen, 0,1,center=mp.Vector3(0,0,0.160), size=mp.Vector3(abd_taper.xsize, abd_taper.ysize+2,0))

dft_yz_1 = sim.add_dft_fields([mp.Ey], fcen, 0,1, center=mp.Vector3(abd_taper.ports["o1"].x,abd_taper.ports["o1"].y,0), size=mp.Vector3(0, abd_taper.ysize+2, sz/4))

dft_yz_2 = sim.add_dft_fields([mp.Ey], fcen, 0,1, center=mp.Vector3(abd_taper.ports["o2"].x,abd_taper.ports["o2"].y,0), size=mp.Vector3(0, abd_taper.ysize+2, sz/4))
vol1 = mp.Volume(
    center=mp.Vector3(0, 0, 0),
    size=mp.Vector3(sx, 0,sz)
    )
vol2 = mp.Volume(
    center=mp.Vector3(0, 0, 0.160),
    size=mp.Vector3(sx, sy,0),
    )
vol3 = mp.Volume(
  center=mp.Vector3(abd_taper.ports["o1"].x,abd_taper.ports["o1"].y,0), 
  size=mp.Vector3(0, abd_taper.ysize+2, sz/4)
)
if mp.am_master():
  eps_parameters = dict(contour=False)
  sim.plot2D(output_plane=vol1, eps_parameters=eps_parameters,labels=True)
  plt.savefig('edge_coupler_sim.png', dpi=150, bbox_inches='tight')
  plt.close()
  eps_parameters = dict(contour=False)
  sim.plot2D(output_plane=vol2, eps_parameters=eps_parameters,labels=True)
  plt.savefig('edge_coupler_sim_2.png', dpi=150, bbox_inches='tight')
  plt.close()
  eps_parameters = dict(contour=False)
  sim.plot2D(output_plane=vol3, eps_parameters=eps_parameters,labels=True)
  plt.savefig('edge_coupler_sim_3.png', dpi=150, bbox_inches='tight')
  plt.close()

def progress(sim):
    if mp.am_master():
        print(f"t = {sim.meep_time():.1f}")
        sys.stdout.flush()

sim.run(mp.at_every(10, progress),
 until_after_sources=mp.stop_when_energy_decayed(dt=50, decay_by=1e-4))

port1_coeff = (
  sim.get_eigenmode_coefficients(taper_monitor, 
  [1], eig_parity=mp.ODD_Y)
)
port2_coeff = (
  sim.get_eigenmode_coefficients(taper_monitor_2, 
  [1], eig_parity=mp.ODD_Y)
)
norm = port2_coeff.alpha[:,:,0].flatten()
s21 = port1_coeff.alpha[:,:,0].flatten()
ez_data_1=sim.get_dft_array(dft_xy,mp.Ey,0)
ez_data_2=sim.get_dft_array(dft_xz,mp.Ey,0)
ez_data_3=sim.get_dft_array(dft_yz_1,mp.Ey,0)
ez_data_4=sim.get_dft_array(dft_yz_2,mp.Ey,0)

if mp.am_master():
  np.save('ec_wavelengths.npy', wl)
  np.save('ec_s21.npy', s21)
  np.save('ec_norm.npy', norm)
  np.save('ec_ez_data_1.npy', ez_data_1)
  np.save('ec_ez_data_2.npy', ez_data_2)
  np.save('ec_ez_data_3.npy', ez_data_3)
  np.save('ec_ez_data_4.npy', ez_data_4)
  
  # Create field plot
  fig = plt.figure(figsize=(12, 8))
  ax_field = fig.add_subplot(1, 1, 1)
  ax_field.set_title("Steady State Fields")
  # ax_field.imshow(
  #     np.flipud(np.transpose(eps_data)),
  #     interpolation="spline36",
  #     cmap="binary"
  # )

  ax_field.imshow(
      np.flipud(np.transpose(np.real(ez_data_1))),
      interpolation="spline36",
      cmap="RdBu",
      alpha=0.9,
  )
  ax_field.axis("off")
  plt.savefig('fgc_steady_state_fields.png', dpi=150, bbox_inches='tight')
  plt.close()
  fig = plt.figure(figsize=(12, 8))
  ax_field = fig.add_subplot(1, 1, 1)
  ax_field.set_title("Steady State Fields")
  # ax_field.imshow(
  #     np.flipud(np.transpose(eps_data)),
  #     interpolation="spline36",
  #     cmap="binary"
  # )

  ax_field.imshow(
      np.flipud(np.transpose(np.real(ez_data_2))),
      interpolation="spline36",
      cmap="RdBu",
      alpha=0.9,
  )
  ax_field.axis("off")
  plt.savefig('fgc_steady_state_fields_2.png', dpi=150, bbox_inches='tight')
  plt.close()
  print("Simulation completed successfully!")
  print(f"Results saved to: wavelengths.npy, port1_coeff.npy, port2_coeff.npy, eps_data.npy, ez_data.npy")
  print(f"Plots saved to: simulation_geometry.png, steady_state_fields.png")


1
Overwriting ec_MPI_sim.py
Source Code


1
!mpirun -np 34 python ec_MPI_sim.py
Source Code


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import matplotlib.pyplot as plt

# Load results
wl = np.load('ec_wavelengths.npy')
port1_coeff = np.load('ec_s21.npy')
# port2_coeff = np.load('fgc_s12.npy')
ez_data_1 = np.load('ec_ez_data_1.npy')
ez_data_2 = np.load('ec_ez_data_2.npy')
ez_data_3 = np.load('ec_ez_data_3.npy')
ez_data_4 = np.load('ec_ez_data_4.npy')

# Plot transmission spectrum
fig, (ax1) = plt.subplots(1, 1, figsize=(10, 8))

# S11 (reflection)
ax1.plot(wl, 10*np.log10(np.abs(port1_coeff)**2), 'b-', linewidth=2)
ax1.set_ylabel('Transmittance |S21|²')
ax1.set_title('Port 2 Transmittance')
ax1.grid(True, alpha=0.3)


fig = plt.figure(figsize=(12, 8))
ax_field = fig.add_subplot(1, 1, 1)
ax_field.set_title("Steady State Fields (xy)")
ax_field.imshow(
    np.flipud(np.transpose(np.abs(np.real(ez_data_1)))),
    interpolation="spline36",
    cmap="RdBu",
    alpha=0.9,
)
ax_field.axis("off")
plt.show()
fig = plt.figure(figsize=(12, 8))
ax_field = fig.add_subplot(1, 1, 1)
ax_field.set_title("Steady State Fields (xz)")
ax_field.imshow(
    np.flipud(np.transpose(np.abs(np.real(ez_data_2)))),
    interpolation="spline36",
    cmap="RdBu",
    alpha=0.9,
)
ax_field.axis("off")
plt.show()
fig = plt.figure(figsize=(12, 8))
ax_field = fig.add_subplot(1, 1, 1)
ax_field.set_title("Steady State Fields (yz Taper-In)")
ax_field.imshow(
    np.flipud(np.transpose(np.abs(np.real(ez_data_3)))),
    interpolation="spline36",
    cmap="RdBu",
    alpha=0.9,
)
ax_field.axis("off")
plt.show()
fig = plt.figure(figsize=(12, 8))
ax_field = fig.add_subplot(1, 1, 1)
ax_field.set_title("Steady State Fields (yz Taper-Out)")
ax_field.imshow(
    np.flipud(np.transpose(np.abs(np.real(ez_data_4)))),
    interpolation="spline36",
    cmap="RdBu",
    alpha=0.9,
)
ax_field.axis("off")
plt.show()

png

png

png

png

png

This post is licensed under CC BY 4.0 by the author.